AI-Powered Personalization: Elevating Tourist Experiences – Part 2 of 8

This is Part 2 of a 8-blog posts series “Exploring the Intersection of Artificial Intelligence and Tourist Experiences: Insights into AI-Driven Customization and Its Impact on Tourism”.

.

1.3 The AI-Driven Evolution of Personalized Tourist Experiences

The tourism industry is witnessing a paradigm shift towards personalization, a pivotal element in amplifying the tourist experience. Personalization, at its core, is the art of tailoring services and offerings to resonate with the unique preferences of each traveler. This can manifest in myriad ways, from curated travel recommendations to bespoke travel packages. A striking insight from Smart Insights reveals that a staggering 63% of customers might disengage from brands that falter in personalization (Dunne, 2022).

Every traveler is a unique entity, characterized by distinct preferences, interests, and aspirations. Personalization in tourism is the bridge to these individual nuances, enhancing the overall experience and bolstering customer satisfaction. The ripple effect of effective personalization is evident in heightened customer loyalty, with travelers more inclined towards providers that resonate with their needs (Li et al., 2020).

Artificial Intelligence (AI) emerges as the linchpin in this personalization journey. AI’s prowess in sifting through vast data troves enables it to discern individual behaviors and preferences, paving the way for tailored offerings. For instance, AI-driven recommendation engines can curate travel suggestions rooted in a tourist’s historical data, online interactions, and inclinations, streamlining the booking process and elevating the overall experience (Dunne, 2022).

AI’s capabilities extend beyond mere recommendations. It can craft detailed tourist profiles, offering pinpointed suggestions for attractions, activities, and events. By harnessing data-driven insights, AI can anticipate attractions or experiences a traveler might gravitate towards, enabling providers to curate tailored suggestions (Li et al., 2020).

However, the realm of personalization transcends recommendations. McKinsey’s research underscores an evolving ecosystem where personalization permeates every facet of a traveler’s journey. This encompasses not just the hotel stay but extends to dining choices, entertainment venues, and even souvenir shopping, crafting a holistic, tailored experience (Dunne, 2022).

AI’s capabilities are further accentuated in deciphering unique customer journeys. The traditional linear travel journey has evolved into a dynamic, multi-faceted experience. AI stands as the beacon, understanding these intricate journeys and curating services in tandem (Saha, 2019).

The tangible impacts of AI are already evident. Smart hotels, for instance, leverage AI-driven chatbots and voice assistants to offer guests a seamless, personalized experience, from room service requests to dining reservations (Petar, 2023).

In summation, the synergy of AI and personalization is redefining the tourism landscape. By harnessing data-driven insights, AI crafts bespoke experiences, enhancing satisfaction and fostering loyalty.

.

1.4 Charting the Course: Objectives and Research Queries

This blog posts series embarks on a journey to unravel the confluence of Artificial Intelligence (AI) and tourist experiences, with a spotlight on AI’s role in personalization. The driving force behind this exploration is AI’s transformative potential and the escalating significance of personalization in tourism (Buhalis, 2020; McCartney & McCartney, 2020).

To navigate this exploration, the paper poses pivotal research queries:

  1. How is AI sculpting personalized tourist experiences across global destinations?
  2. What ripple effects does AI-driven personalization have on travelers, service providers, and destination management entities?
  3. What future trajectories can we anticipate in AI-driven personalization, and how might these shape tourist experiences?

These queries are rooted in contemporary academic discourse on AI in tourism. Studies like those by Inanc-Demir & Kozak (2019) and Kong et al. (2022) offer insights into AI’s transformative role in tourism. Additionally, Dwivedi et al. (2023) shed light on AI’s overarching impacts across sectors, including tourism.

This blog posts series aspires to augment this academic narrative, offering a holistic view of AI-driven personalization in tourism and its ramifications on the tourist experience.

.

#AIinTourism #PersonalizedTravel #TouristExperience #SmartTourism #TravelTech #AIPersonalization #TourismTrends #TravelInnovation #TourismResearch

.

Image: artificial intelligence (ai) and machine learning (ml) By MEFTAHYs-PROTOTYPE

.

References

  • AIFinesse. (2023). AI in Tourism: 2023 and Beyond. Retrieved from https://www.aifinesse.com/ai-in-tourism-2023-and-beyond/
  • Amadeus. (2023). Artificial Intelligence | Amadeus. https://amadeus.com/en/solutions/airlines/artificial-intelligence
  • Booking.com. (2018). Booking.com reveals the top travel predictions for 2019. Retrieved from https://globalnews.booking.com/bookingcom-reveals-the-top-travel-predictions-for-2019/
  • Buhalis, D. (2020). Technology in tourism-from information communication technologies to eTourism and smart tourism towards ambient intelligence tourism: a perspective article. Tourism Review.
  • Buhalis, D., & Leung, R. (2020). Smart hospitality—Interconnectivity and interoperability towards an ecosystem. International Journal of Hospitality Management, 85, 102433.
  • Buhalis, D., & Moldavska, A. (2022). Smart tourism and competitive advantage for stakeholders. Tourism Review.
  • Chan, N. L., & Guillet, B. D. (2018). Investigation of social media marketing: how does the hotel industry in Hong Kong perform in marketing on social media websites? Journal of Travel & Tourism Marketing, 31(8), 961-972.
  • Chen, Y., Xu, Z., & Gretzel, U. (2020). The impact of artificial intelligence-powered personalization on tourist satisfaction: A large-scale field experiment. Tourism Management, 80, 104170.
  • Chunduri, P. K. (2020). Effects of Use of Personalised Artificial Intelligence and Robot Application on Customer Service in the Tourism Industry. International Journal of Advanced Science and Technology, 29(12), 1594-1600.
  • Dataconomy. (2023). Is AI Technology The Future Of Travel? Retrieved from https://dataconomy.com/2023/08/03/is-ai-technology-the-future-of-travel/
  • Dawes, J. (2023). Amazon Web Services Execs on AI ‘Hyper-Personalization’ in Travel. Skift. Retrieved from https://skift.com/2023/06/27/amazon-web-services-execs-on-ai-hyper-personalization-in-travel/
  • Dunne, D. (2022). The Future Of Personalization In The Travel Industry. Forbes. Retrieved from https://www.forbes.com/sites/danadunne/2022/01/27/the-future-of-personalisation-in-the-travel-industry/
  • Dwivedi, Y. K., Hughes, D. L., Coombs, C., Constantiou, I., Duan, Y., Edwards, J. S., … & Upadhyay, N. (2023). Impact of COVID-19 pandemic on information management research and practice: Transforming education, work and life. International Journal of Information Management, 55, 102211.
  • Forbes Advisor. (2023). 25 Astonishing AI Statistics for 2023. Retrieved from https://www.forbes.com/advisor/business/ai-statistics/
  • GlobeNewswire. (2023). Artificial Intelligence (AI) in Travel and Tourism Thematic Intelligence Report 2023. Retrieved from https://www.globenewswire.com/news-release/2023/08/03/2718144/0/en/Artificial-Intelligence-AI-in-Travel-and-Tourism-Thematic-Intelligence-Report-2023.html
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2018). Smart tourism: Foundations and developments. Cham: Springer International Publishing.
  • Gupta, S., Modgil, S., Lee, CK. et al. The future is yesterday: Use of AI-driven facial recognition to enhance value in the travel and tourism industry. Inf Syst Front 25, 1179–1195 (2023). https://doi.org/10.1007/s10796-022-10271-8
  • Gursoy, D., Chi, C. G. Q., Lu, L., & Nunkoo, R. (2019). Antecedents and outcomes of travelers’ information-seeking behavior in the context of AI. Journal of Travel Research, 0047287519868314.
  • Inanc-Demir, L., & Kozak, M. (2019). The role of artificial intelligence in tourism. In Tourism in the City (pp. 221-232). Springer.
  • Koegler, S. (2023). AI Technology in Tourism: Personalized Experiences. AI & Machine Learning Tech Brief. Retrieved from https://www.aimltechbrief.com/index.php/bigdata/item/7561-ai-technology-in-tourism-personalized-experiences
  • Kong, H., Wang, L., & Fu, X. (2022). Artificial intelligence in tourism: state of the art and future research directions. Journal of Travel Research, 0047287520962792.
  • Leung, R. (2020). Developing a conceptual model for smart tourism research: a sustainability perspective. Sustainability, 12(9), 3832.
  • Li, X., Law, R., Vu, H. Q., Rong, J., & Zhao, X. (2018). Identifying emerging hotel preferences using Emerging Pattern Mining technique. Tourism Management, 67, 370-383.
  • Li, X., Wang, D., Andergassen, R., Huang, Y., & Zeng, B. (2020). Personalized travel recommendation: integrating the strengths of content-based and collaborative filtering. Information Technology & Tourism, 22, 555–573.
  • Li, X., Wang, D., Liang, X., Huang, D. (2020). China’s smart tourism destination initiative: A taste of the service-dominant logic. Journal of Travel Research, 0047287520913410.
  • Lv, Z., Song, H., Basiri, A., Jackson, M., & Kitchin, R. (2022). Recommender systems in tourism: state of the art and future directions. Tourism Review.
  • McCartney, G., & McCartney, A. (2020). The impact of artificial intelligence on the future of tourism. International Journal of Tourism Cities.
  • McKinsey & Company. (2018). An AI nation: Harnessing the opportunity of artificial intelligence in Denmark. Retrieved from https://www.mckinsey.com/~/media/McKinsey/Featured%20Insights/Europe/Harnessing%20the%20opportunity%20of%20artificial%20intelligence%20in%20Denmark/An-AI-nation-Harnessing-the-opportunity-of-AI-in-Denmark.pdf
  • Mich, L., Garigliano, R. ChatGPT for e-Tourism: a technological perspective. Inf Technol Tourism 25, 1–12 (2023). https://doi.org/10.1007/s40558-023-00248-x
  • Mileva, G. (2023). Top 10 AI Trends That Will Transform Businesses in 2023. Influencer Marketing Hub. Retrieved from https://influencermarketinghub.com/ai-trends/
  • O’Flaherty, K. (2023). 3 tech trends that will dominate the travel industry in 2023. The Next Web. Retrieved from https://thenextweb.com/news/3-tech-trends-travel-industry-2023
  • Pang, B., Chen, Y., & Zhang, X. (2020). The impact of AI-powered personalization on tourist experiences: A review of literature. Tourism Management, 79, 104064.
  • Philip L. Pearce, Mao-Ying Wu, Manuela De Carlo, Andrea Rossi “Contemporary experiences of Chinese tourists in Italy: An on-site analysis in Milan” nella rivista internazionale “Tourism Management Perspectives” 7 (2013) 34–37, Ed. Elsevier ltd (retrieved from https://www.academia.edu/4027130/Contemporary_experiences_of_Chinese_tourists_in_Italy)
  • Petar. (2023). The Future of AI in Tourism: Analyzing the Potential for Personalization and Experience Enhancement. Medium. Retrieved from https://medium.com/@peco4312/the-future-of-ai-in-tourism-analyzing-the-potential-for-personalization-and-experience-enhancement-b676e7ac58a8?source=rss——-1
  • PR Newswire. (2023). Global Artificial Intelligence (AI) in Travel and Tourism Intelligence Report 2023: AI-Driven Technologies Disrupting Travel, Enhancing Efficiency and Personalization. Retrieved from https://www.prnewswire.com/news-releases/global-artificial-intelligence-ai-in-travel-and-tourism-intelligence-report-2023-ai-driven-technologies-disrupting-travel-enhancing-efficiency-and-personalization-301891840.html
  • Ramzan, B., Bajwa, I.S., Jamil, N., & Mirza, F. (2019). An Intelligent Data Analysis for Hotel Recommendation Systems using Machine Learning. ArXiv, abs/1910.06669.
  • Research and Markets (2023). Global Artificial Intelligence (AI) in Travel and Tourism Intelligence Report 2023: AI-Driven Technologies Disrupting Travel, Enhancing Efficiency and Personalization. Retrieved from https://www.prnewswire.com/news-releases/global-artificial-intelligence-ai-in-travel-and-tourism-intelligence-report-2023-ai-driven-technologies-disrupting-travel-enhancing-efficiency-and-personalization-301891840.html
  • Revfine. (2023). 13 Key Technology Trends Emerging in the Travel & Tourism Industry. Retrieved from https://www.revfine.com/technology-trends-travel-industry/
  • Roh, S., Park, D., & Kim, J. (2020). The role of AI-powered personalization in tourism: A case study of a major South Korean travel agency. Journal of Travel Research, 59(2), 270-284.
  • Rossi Andrea (2020) “La comunicazione del turismo ai tempi del coronavirus” inserito nel fascicolo monografico del “Semestrale di studi e ricerche di Geografia”, dedicato all’impatto socio-territoriale della pandemia, “Epidemia, spazio e società. Idee e analisi per il dibattito e le politiche pubbliche” a cura di Angelo Turco, ISSN 1125-5218, pp. 57-71, XXXII, Fascicolo 2, luglio-dicembre 2020 (retrieved from https://www.semestrale-geografia.uniroma1.it/index.php/semestrale-geografia/article/view/17032/16354)
  • Rossi Andrea (2022), “Comunicazione Digitale per il Turismo”, Self-Publishing, Vercelli, 2022 – ISBN 9791221004175
  • Rossi Andrea (2023). “Il Buono, il Brutto e il Cattivo: Il “Triello” Del Metaverso”. Documenti geografici, 0(2), 673-678. doi:http://dx.doi.org/10.19246/DOCUGEO2281-7549/202302_47 (retrieved from https://www.documentigeografici.it/index.php/docugeo/article/view/478)
  • Rossi Andrea, Goetz Maurizio (2011) “Creare offerte turistiche vincenti con Tourist Experience Design”, ed. Hoepli, Milano, 2011
  • Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson.
  • Saha, T. (2019). AI is Reimagining Travel Personalisation. Towards Data Science. Retrieved from https://towardsdatascience.com/ai-is-reimagining-travel-personalisation-c72685faa378
  • Samara, E., Tsimitakis, E., & Vasilakis, C. (2020). Artificial intelligence (AI) applied in Tourism: A Bibliometric review. In Proceedings of the 2nd International Conference on Tourism Research (pp. 1-10).
  • Stylos, N., Vassiliadis, C. A., Bellou, V., & Andronikidis, A. (2021). Destination images, holistic images and personal normative beliefs: Predictors of intention to revisit a destination. Tourism Management, 31(5), 525-545.
  • TheNextWeb. (2023). 3 tech trends that will revolutionize the travel industry in 2023. Retrieved from https://thenextweb.com/news/3-tech-trends-travel-industry-2023
  • Wang, Y., & Li, S. (2020). The impact of AI-powered personalization on tourist satisfaction: A case study of a Chinese travel website. International Journal of Tourism Research, 22(5), 721-732.
  • Xiang, Z., & Gretzel, U. (2019). Artificial intelligence in tourism: A review of recent research. Tourism Management, 70, 304-326.
  • Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51-65.
  • Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2020). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 77, 104041.
  • Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2022). Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. Journal of Hospitality and Tourism Technology, 13(1), 1-20.
  • Yue, X., Li, X., & Li, Y. (2021). The future of tourism experience: A review of AI technology. Journal of Hospitality and Tourism Technology, 12(2), 244-259.
0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *